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5 Abstract 

When internal waves interact with topography, such as continental slopes, they can transfer wave energy to 

local dissipation and diapycnal mixing. Submarine canyons comprise approximately ten percent of global 

continental slopes, and can enhance the local dissipation of internal wave energy, yet parameterizations 

of canyon mixing processes are currently missing from large-scale ocean models. As a first step in the 

development of such parameterizations, we conduct a parameter space study of M2 tidal-frequency, low-

mode internal waves interacting with idealized V-shaped canyon topographies. Specifically, we examine the 

effects of varying the canyon mouth width, shape and slope of the thalweg (line of lowest elevation). This 

effort is divided into two parts. In the first part, presented here, we extend the theory of 3-dimensional 

internal wave reflection to a rotated coordinate system aligned with our idealized V-shaped canyons. Based 

on the updated linear internal wave reflection solution that we derive, we construct a ray tracing algorithm 

which traces a large number of rays (the discrete analog of a continuous wave) into the canyon region where 

they can scatter off topography. Although a ray tracing approach has been employed in other studies, we 

have, for the first time, used ray tracing to calculate changes in wavenumber and ray density which, in 

turn, can be used to calculate the Froude number (a measure of the likelihood of instability). We show that 

for canyons of intermediate aspect ratio, large spatial envelopes of instability can form in the presence of 

supercritical sidewalls. Additionally, the canyon height and length can modulate the Froude number. The 

second part of this study, a diagnosis of internal wave scattering in continental slope canyons using both 

numerical simulations and this ray tracing algorithm, and test of robustness of the ray tracing, is presented 

in the companion article. 

6 Keywords: Internal waves; canyons; mixing; ray tracing 

7 1. Introduction 

8 Internal waves are efficient transmitters of energy across ocean basins. These waves, either generated by the 

9 winds or tidal flows over rough topography (Munk and Wunsch, 1998) propagate through the ocean basins 
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10 until they are forced to break by topographic features, or non-linear wave-wave interactions (MacKinnon 

11 et al., 2013). To first approximation, 30-60% of the initial wave energy makes it away from the generation 

12 site and previous studies have shown that a sizable portion of this energy can make it to the edge of the 

13 basins where the continental slope is encountered (St. Laurent and Nash, 2004; Klymak et al., 2006; Alford 

14 et al., 2011; Waterhouse et al., 2014). At these continental slopes, internal waves are scattered, leading to 

15 higher wavenumbers and/or greater energy density. They can then become unstable (due to shear instability, 

16 convective instability or some combination thereof), break and lead to diapycnal mixing. Diapycnal mixing 

17 due to internal tide breaking, both near the generation site and in the farfield, is an important component 

18 of the global meridional overturning circulation (Ilicak and Vallis, 2012; Talley, 2013). 

19 Over the past two decades, there have been numerous studies aimed at understanding the parameter space 

20 for which internal waves break over a host of farfield topographies, as well as at the generation site itself 

21 (Legg and Klymak, 2008; Nikurashin and Legg, 2011; Johnston et al., 2011). Plane slopes (Cacchione 

22 and Wunsch, 1974; Ivey and Nokes, 1989; Hallock and Field, 2005; Nash et al., 2007; Kunze et al., 2012; 

23 Hall et al., 2013), convex and concave slopes (Legg and Adcroft, 2003), ridges and mounts (Johnston and 

24 Merrifield, 2003; Klymak et al., 2013), channels (Drijfhout and Maas, 2007) and isolated/random topographic 

25 features (Egbert and Ray, 2000; Buehler and Holmes-Cerfon, 2011; Legg, 2014) have been studied from both 

26 observational and modeling perspectives. 

27 Despite their potential to be a sink of internal tidal energy, continental slope canyons have been largely 

28 overlooked by the modeling community. As Kunze et al. (2002) suggested, submarine canyons may indeed 

29 be significant sinks of internal wave energy due to both their frequency along the continental slope and 

30 their geometries. Given that about 10% of the continental slope is carved out by such canyons, and that 

31 the geometry of the canyons may be conducive to wave focusing, Carter and Gregg (2002) argued from 

32 their observations of Monterey Canyon that the internal wave energy dissipation and subsequent mixing is 

33 non-negligible (approximately the same order of magnitude as the mixing currently parameterized in ocean 

34 general circulation models) and warrants study in more depth. This conclusion is in agreement with other 

35 observational studies of internal wave-driven mixing in continental slope canyons (Gordon and Marshall 

36 (1976); Hotchkiss and Wunsch (1982); Gardner (1989); Petruncio, Rosenfeld, and Paduan 1998; Codiga, 

37 Renouard, and Fincham 1999; Bosley et al. (2004); Bruno et al. (2006); Lee et al. (2009a,b); Xu and Noble 

38 (2009); Gregg et al. (2011); Hall and Carter (2011); Waterhouse et al. (2013); Vlasenko et al. (2016)). 

39 While our study is motivated by observations of mixing in actual continental slope canyons, we begin with 

40 idealized V-shaped canyons in order to tease out the fundamental dynamics (we further justify this choice of 

41 topography in section 4). We develop and employ a ray tracing algorithm to explore the impact of canyon 

42 geometry on ray focusing and wave number within a linear context. While ray tracing algorithms have been 

43 used to understand internal wave dynamics before (Manders and Maas, 2004; Maas, 2005; Drijfhout and 
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44 Maas, 2007; Rabitti and Maas, 2013, 2014), for the first time, we use reflection information to calculate 

45 the Froude number (formally defined in section 3) and hence estimate the likelihood for instability. Thus, 

46 without the use of a fully-nonlinear general circulation model (GCM), we aim to predict, using our linear ray 

47 tracing algorithm, where regions of instability may occur for wave scattering off idealized, V-shaped canyon 

48 topography. 

49 The idealized canyons we have chosen to analyze are oversimplifications of real canyon bathymetry; however 

50 canyons tend to follow a roughly V-shaped profile (Shepard, 1981) and our focus here is not to capture every 

51 detail of particular wave-topography interaction, but to explore the parameter space (Carter and Gregg, 

52 2002). Specifically, we do a suite of experiments to vary the geometric parameters of the ratio of canyon 

53 mouth opening to canyon length, as well as the shape/thalweg (line of lowest elevation) slope, to understand 

54 the wave reflection behavior and resulting instability. These are two important geometric parameters which 

55 vary between observed continental slope canyons, and thus a good starting point for our study (Gregg et al., 

56 2011; Hall and Carter, 2011). As a further simplification, we only consider remotely-generated M2 tidal-

57 frequency, mode-one internal waves, a reasonable assumption as a sizable fraction of the internal wave energy 

58 is observed to be at the M2 tidal-frequency (Munk and Wunsch, 1998). 

59 The goal of Part 1 of this study is to extend the internal wave reflection theory to 3D, rotated topography 

60 and to use this theory to construct a ray tracing algorithm. Our objective in designing this ray tracing 

61 is to follow a large number of rays through the canyon region as they reflect off the topography, and store 

62 information on the trajectory of these rays. This stored information then allows us to i) predict regions where 

63 instability is energetically possible and ii) understand the processes that cause these regions to experience 

64 instability. In Part 2, through a comparison with numerical simulations, we also seek to test the robustness 

65 of this ray tracing derived from the linear theory. This ray tracing will then be used in tandem with a fully 

66 nonlinear GCM to understand the topographic control on wave breaking and subsequent energy loss. 

67 In this paper, we build upon existing internal wave reflection theory and use this theory as the backbone 

68 of our ray tracing algorithm to understand internal wave scattering in continental slope canyons. In §2, 

69 we present the physical theory of 3D wave reflection. Based on this theory, we develop the methodology 

70 used in the linear ray tracing algorithm in §3 and present examples of the ray tracing for various idealized 

71 topographies. This ray tracing code may be applied to internal wave scattering off any arbitrary topography, 

72 as the algorithm depends only on the local topographic parameters. We then present the idealized canyons, 

73 and the justification for such canyons, in section §4. In §5 we analyze the results of the ray tracing algorithm 

74 for two classes of idealized continental slope canyons to obtain a first-order understanding of internal wave 

75 dynamics in continental slope canyons. We find that the linear ray tracing algorithm predicts large envelopes 

76 of both increased ray density and, for canyons with non-vertical sidewalls, an increase in vertical wave number, 

77 both of which can contribute to the formation of instabilities. We also find that this region of instability 
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78 due to topographic focusing is modified by the spatial extent of the canyon, including the canyon height 

79 and relative canyon length. In Part 2 of this study we will add to this understanding by complimenting the 

80 ray tracing with a fully-nonlinear GCM, as well as using the GCM to test the robustness of the ray tracing 

81 algorithm (Nazarian and Legg, 2017b). 

82 2. Theory 

83 When low mode internal waves are scattered by topography, energy can be effectively transferred to higher 

84 vertical wavenumbers, which leads to a higher Froude number. This nondimensional number, Fr, quantifies 

85 the stability of the flow and the likelihood of transitioning into the turbulent flow regime. We thus develop 

86 the 3D internal wave scattering theory applied to a rotated coordinate system to calculate the wavenumber as 

87 a function of the geometry of the topography by which it is scattered, as well as the original wave properties. 

88 The original theory of internal wave reflection off topography was set forth by Phillips (1963) and Phillips 

89 (1966) and considered further by Eriksen (1982). We adapt the setup of Eriksen (hereafter E82) to a rotated 

90 coordinate system to construct the two symmetric sides of the V-shaped canyon. 

91 We start by considering a plane slope, inclined at an angle, α, relative to the horizontal. We then rotate 

92 the plane by another angle, ζ, relative to the y-axis. These angles are displayed in figure 1 and the resulting 

93 inclined, rotated plane comprises one sidewall of our V-shaped canyon. 

94 Similar to E82, we consider a semi-infinite domain with x denoting the onshore direction, y denoting the 

95 alongshore direction and z denoting the vertical (as seen in figure 1). We start with the linearized, inviscid, 

96 non-rotating Boussinesq equations and assume that nondivergence is satisfied. Our guiding equations can 

97 thus be written as: 

∂u0 1 ∂p0 
⎫ 

= − 
∂t ρ0 ∂x 
∂v0 1 ∂p0 

⎪⎪⎪⎪⎪⎪⎪⎪⎪= − ⎬ 
∂t ρ0 ∂y 

0 0 (1) 
∂2w 1 ∂2p

N2 0 w + = − 
∂t2 ρ0 ∂t∂z 

∂u0 ∂v0 ∂w0 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ + + = 0 
∂x ∂y ∂z 

98 where the prime notation denotes the wave perturbation fields. u, v and w are the velocity components in 

99 x, y and z, respectively, and p is the pressure. N2 is the background density stratification, which is defined 
∂ρ as N2 = − g , where ρ0 is the background density. The system of four equations in four unknowns can be 100 ρ0 ∂z 

101 combined to derive an equation for the vertical velocity w0: 
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∂2 ∂2 ∂2 ∂2 ∂2 ∂2 
0 ( + + )w + N2( + )w 0 = 0 (2) 

∂t2 ∂x2 ∂y2 ∂z2 ∂x2 ∂y2 

102 Assuming a plane wave, decomposed into its incident and reflected components (indicated by I and R 

103 subscripts, respectively), the vertical velocity can be expressed as: 

0 w = AI exp[i(kI x + lI y + mI z − ωz)] + AR exp[i(kRx + lRy + mRz − ωz)] (3) 

104 where k, l and m are the onshore, alongshore and vertical components of the wavenumber, respectively, and 

105 ω is the wave frequency. AI and AR are the incident and reflected wave amplitudes. Alternatively, the 

106 wavenumber components can be written as (k, l, m) = (KH cos(φ + ζ),KH sin(φ + ζ),m), where KH is the 

107 horizontal component of the wave number, φ is the horizontal angle between the normal of the topography 

108 and wave vector and ζ is the angle of rotation of the inclined plane (again, following the E82 protocol and 

109 shown in figure 1). 

110 Substituting (3) into (2) and applying the bottom boundary condition of no normal flow at x = −(tan ζ)y + 

( cot α 
111 )z, the equality in (2) is satisfied if and only if cos ζ 

kI cos ζ + lI sin ζ + mI tan α = kR cos ζ + lR sin ζ + mR tan α (4) 

lI cos ζ − kI sin ζ = lR cos ζ − kR sin ζ (5) 

112 It should be noted that in the case of ζ = 0, (4) and (5) simplifies to the case derived in E82 (i.e. with the 

113 setup of lI = lR). 

114 We additionally know that the dispersion relation for internal waves can be expressed as 

2 2 mI mR N2 − ω2 

tan2 θI = = = tan2 θR = (6) 
k2 + l2 k2 + l2 ω2 
I I R R 

115 where the angle θ is the angle of the wave vector relative to the horizontal plane. It is related to the angle 

π 
116 of the group velocity vector to the horizontal, θg , in figure 1 by the relation θ = ± θg. Combining the 2 

117 conservation of wavenumber equations, (4) and (5), as well as the dispersion relation, (6), we can solve for the 

118 reflected wavenumbers as a function of the incident wavenumber. Ignoring the solution of wave propagation 

119 through the bottom, we find: 

mR cos(α − θ) sin(2θ) sin(2α)(cos(φI ) − 1) 
= − − (7) 

mI cos(α + θ) 2 cos(α − θ) cos(α + θ) 
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125 

120 which is the same as derived in the non-rotated E82 case. Note that the subscripts are omitted for angle θ 

121 since the angle is conserved upon reflection. The horizontal components, k and l, however, differ from the E82 

122 solution given that we have rotated the reference frame by angle ζ. The solution for each of these reflected 

2 
123 wavenumbers yields a quadratic equation of the form ak,lx + bk,lx + ck,l = 0, where x = (kR/kI ), (lR/lI ) 

124 and the coefficients, in standard notation, are expressed, respectively, as: 

⎫ ⎪⎪⎪⎪⎬ ⎪⎪⎪⎪⎭ 

⎫ ⎪⎪⎪⎪⎬ ⎪⎪⎪⎪⎭ 

ak = sec2(ζ) 

bk = 2 tan(ζ) tan(φI + ζ) − 2 tan2(ζ) (8) 
2 m

ck = tan2(ζ) + tan2(φI + ζ) − 2 tan(φI + ζ) tan(ζ) − ( R ) sec2(φI + ζ) 2 mI 

and 

al = csc2(ζ) 

bl = 2 cot(ζ) cot(φI + ζ) − 2 cot2(ζ) (9) 
2 m

cl = cot2(ζ) + cot2(φI + ζ) − 2 cot(φI + ζ) cot(ζ) − ( R ) csc2(φI + ζ) 2 mI 

126 Again, notice that the ratio of the reflected wavenumber to the incident wave number reduces exactly to 

127 the E82 solution in the limit of ζ=0, as it should. The equations (7), (8) and (9) constitute a one-to-one 

128 relationship between the reflected and incident wavenumbers solely as a function of the wave and topographic 

129 properties; the utility of this relationship will be fully realized in §3 in the construction of a linear ray tracing 

130 algorithm. It should be stressed that although we have developed this theory with the intent of using it for 

131 continental slope canyons, it is generalizable to any arbitrary topography, as all topography can be described 

132 in terms of a local tangent plane characterized by the two angles, α and ζ. 

133 For the problem of internal wave reflection, the relation between the wave slope and the topographic slope, 

134 known as the criticality, determines the directionality of the reflected ray. The criticality or steepness, s, of 

135 the topography is calculated as 

| tan α| 
s = (10) 

| tan θg| 

136 where α is the local angle of inclination relative to the horizontal and θg is the group velocity angle relative 

137 to the horizontal. When this relation is inserted into (10), and simplified using (6), we find that 

| tan α| 
s = (11) 

|ω2/(N2 − ω2)| 
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138 When s < 1, the topography is referred to as subcritical, and rays undergo forward reflection. The converse 

139 is true for s > 1; that is the topography is termed supercritical and the rays reflect backwards. In the case 

140 of the topographic slope exactly matching that of the wave, the topography is deemed critical (i.e. s = 1). 

141 Slope criticality is the main differentiator between the different classes of canyons we consider in this study, 

142 and we return to it in section 4. 

143 3. Ray Tracing Algorithm 

144 In order to understand the fundamental dynamics inside the idealized continental slope canyons or, more 

145 generally, wave reflection off any topography, a ray tracing algorithm is developed. Rays propagate through-

146 out the domain based upon their group velocity, cg = (∂ω/∂k, ∂ω/∂l, ∂ω/∂m) where ω is the internal wave 

147 frequency, which satisfies the dispersion relation (6). Thus, the internal wave group velocity can be expressed 

148 as: 

N 
cg = (sin2(θ) cos(η), sin2(θ) sin(η), − sin(θ) cos(θ)) (12) 

K 

149 where η is the horizontal angle, or mathematically, η = arctan(l/k), and K is defined as the resultant 

150 wavenumber (i.e. K2 = k2 + l2 + m2). If the stratification is constant (as it is in our idealized canyon study), 

151 the rays conserve wavenumber (and frequency) except during reflections. Since we do not consider Earth’s 

152 rotation in this study, cg has no f dependence, although f can be reinserted into the ray tracing algorithm 

153 by using the dispersion relation with rotation. As the wave numbers change upon reflection, so too the group 

154 velocity changes. Equation (12) is multiplied by the time step, dt, to convert the group velocity to a ray 

155 propagation distance, i.e. x(t + dt) = x(t) + cgdt. 

156 In addition to needing values of α and ζ to evaluate the reflected wave numbers (7), (8) and (9), φI , the 

157 horizontal angle of the incoming ray relative to the horizontal normal line of the slope (see figure 1) is also 

158 required. This is the most time-consuming quantity to calculate since it depends on the orientation of the 

159 ray (i.e. quantity η) relative to the orientation of the slope (i.e. quantity ζ). Given that the sign of φI is 

160 important, we define φI to be positive if the topography’s normal line is to the left of the incoming ray and 

161 negative if the topography’s normal line is to the right of the incoming ray (e.g. φI > 0 in figure 1). 

162 Care must also be taken in calculating angle η after reflection. While the relations of (8) and (9) yield 

163 reflected wave numbers, and thus a value of η, this is only one possible value of ηR (for reference, we define 

164 this value as η1). Specifically, the reflected value of η could be |η1|, −|η1|, (|η1| − π/2) or (π/2 − |η1|). We 

165 have developed a subroutine within the ray tracing algorithm to determine which value of η should be used. 

166 Namely, for every reflection two of the four values of η will lead to the ray propagating beneath topography. 
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167 Given that this is unphysical, these two η options, which can vary for each case of reflection, are discarded. 

168 The final condition in choosing the reflected η is that the sign of φI must be the opposite of φR; that is, 

169 backward reflection is not allowed. The remaining value of η is then taken as ηR. 

170 Rays are allowed to exit through all lateral boundaries and reflect back downwards from the sea surface. 

171 The wave numbers of each ray are diagnosed, as increases in the vertical wavenumber can lead to instability. 

172 The density of the rays is also tracked, as a high ray density, and thus high energy density, can also lead to 

173 instability. One property of the waves that we are not tracking is the phase. We are therefore not able to 

174 diagnose regions of constructive or destructive interference. 

175 The ray tracing algorithm is illustrated for various continental slope topographies: a vertical wall (with both 

176 normally- and obliquely-incident rays), a subcritical slope and a supercritical slope in figures 2, 3, 4 and 5, 

177 respectively. For each case, only one ray is shown for clarity. 

178 In our implementation of the ray tracing algorithm for continental slope canyons, the wave is initialized 

179 at the Western boundary (at x = 0) in the form of approximately 2000 rays, spread evenly over the y-z 

180 plane. For every initialization, there are both upward- and downward-going rays. Thus, we use our discrete 

181 ray tracing algorithm to accurately match the energy propagation of a continuous internal wave. The rays 

182 are tracing out the group velocity of the internal wave since we are interested in energy loss resulting from 

183 reflection, and tracing of phase is a secondary concern, and thus not included in the ray tracing algorithm. 

184 Although, for the purpose of our canyon study, the topography is idealized and known analytically, it is 

185 interpolated to a finer grid so that the ray tracing algorithm is generalizable to any input topography, such 

186 as that of an observed continental slope canyon. The ray tracing algorithm is also able to read bathymetry 

187 files that have nonuniform resolution and interpolate them onto an isotropic grid. 

188 All rays are initialized with Eastward group velocity, although this initial condition can be customized to 

189 any arbitrary value. When rays interact with topography, be it the seafloor, shelf, or canyon, the new wave 

190 number components are calculated according to the three relations of (7), (8) and (9). The ray tracing 

191 algorithm calculates the point of reflection and does not allow the rays to propagate under the topography. 

192 Although it is known exactly for our idealized topography, the angle of vertical inclination, α, is calculated 

193 locally to make the algorithm as generalizable as possible. In its current form, ζ can be prescribed or 

194 calculated upon each reflection. Since the magnitude of ζ is constant for each canyon we consider in this 

195 study, we prescribe it for the canyons in this study since it reduces the ray tracing run time. 

196 To quantify the potential for instability of the wave, we utilize the wave Froude number, canonically calculated 

197 as 

8 



UH 
Fr = (13) 

|cp,H| 

198 where UH is the maximum horizontal flow speed associated with the wave and cp,H is the horizontal phase 

ω 
199 speed and expressed as (cp,x, cp,y ) = (k, l). The Froude number indicates potential regions of instability k2+l2 

200 if the ratio is greater than unity, or when the flow speed exceeds the phase speed. From the dispersion relation, 

201 (6), the phase speed in the denominator of (13) scales like 

s� �2 � �2 √ 
ωk ωl ω N2 − ω2 1 

cp,H = + = √ = ∝ (14) 
k2 + l2 k2 + l2 k2 + l2 m m 

202 where the last equality is derived from the dispersion relation, (6). Therefore 

UH 
Fr ∝ (15) 

1/m 

203 The numerator of (13) can likewise be approximated. Assume that the wave fluxes some amount of energy 

204 along an infinite number of rays, given by 

F = E × cg (16) 

205 where F is the energy flux per unit area, E is the energy density and cg is the group velocity. If we assume 

206 that the total wave is decomposed into an infinite number of rays, then (16) can be rewritten in terms of 

207 individual rays as 

F = E0 × RDA × cg (17) 

208 where RDA is the ray density per unit area, diagnosable from the ray tracing (with units of number of rays 

209 per unit area) and E0 is the energy per a single ray (i.e. a constant). If (17) is integrated over all space to 

210 include all rays, it will converge exactly to (16). Thus the energy density, E, can be expressed as 

E = E0 × RDA (18) 

211 If we multiply both sides of (18) by some arbitrary unit area, we find that the energy scales like the ray 

212 density. Given that the wave energy is equipartitioned between kinetic energy and potential energy, 

KE ∝ RD (19) 
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213 where KE is the kinetic energy and RD is the ray density (with units of number of rays). Since the horizontal 

214 kinetic energy scales like U2 , (19) simplifies to H 

U2 
H ∝ RD (20) 

215 and thus, we can plug this into (15) and estimate the Froude number as 

√ 
RD 

Fr ∝ (21) 
1/m 

216 Therefore, the ratio of the reflected wave’s Froude number to the incoming wave’s Froude number can be 

217 taken exactly as 

r 
Fr1 RD1 m1 

= ( ) × ( ) (22) 
Fr0 RD0 m0 

218 Note that RD0 is the number of rays initialized at the Western boundary evaluated at the same depth as 

219 RD1. Both RD0 and RD1 have units of number of rays per grid box. Taking the Froude number for the 

220 gravest (lowest) baroclinic internal tide from Legg (2014) (Fr0 here, where Fr0 = √ U0π )), we can solve 
N2−ω2 H0 

221 for the maximum final Froude number in any given grid cell: 

r 
RD1 m1 U0π 

Fr1,max = ( )|( )|max( √ ) (23) 
RD0 m0 N2 − ω2 H0 

222 where U0 and H0 are the wave velocity amplitude and ocean depth at the Western boundary, respectively. 

223 Thus, for every grid cell in the ray tracing algorithm, we take the relative ray density and maximum vertical 

224 wave number to calculate the maximum Froude number. It is worth noting that, for our setup, U0 = 0.02 m/s 

225 and H0 = 200 m, leading to an initial Froude number of Fr0 = 0.32. Thus, the wave is stable and will not 

226 break on its own; all breaking is the result of scattering off topography. While ray tracing algorithms have 

227 been used before to understand internal wave reflection (Manders and Maas, 2004; Maas, 2005; Drijfhout 

228 and Maas, 2007; Rabitti and Maas, 2013, 2014), the ray tracing algorithm that we develop is novel in that it 

229 uses the change in ray density and vertical wavenumber to estimate the maximum Froude number as a result 

230 of ray reflection. We present a synthesis plot of the ray tracing capabilities using an idealized continental 

231 slope canyon, the specific topography of interest in this study, after we introduce these canyons in section 4. 

232 4. Canyon Setup 

233 While this theory can be tested on any arbitrary topography, we have developed it to gain an understanding 

234 of internal wave dynamics in submarine canyons. Additionally, given that one of the variables the ray tracing 
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235 algorithm uses to diagnose instability is ray density, canyons are an ideal testbed since they are one of the 

236 few topographies that can lead to changes in ray density due to 3D wave focusing effects. To construct 

237 the V-shaped canyons, we take two symmetric inclined planes and join them at the head (see figure 1). 

238 The first type of canyon we construct is the near-critical slope canyon, such that the center of the canyon 

239 is of near-critical slope. For the near critical slope canyon the thalweg steepness, sthalweg, is 0.94, so the 

240 topographic slope is near-critical (recall that a steepness value of unity is considered critical) for our case of 

241 the M2-tidal frequency. This is constant for all canyons in the class, as the group velocity angle is dictated 

242 by the stratification and wave (tidal) frequency, both of which are held constant as well as αthalweg, which 

243 is also held constant. By construction, the sidewalls for the near-critical slope canyon are near-critical to 

244 supercritical (i.e. α = A schematic of this type of canyon is shown in figure 6a. αnear-critical → 90◦). 

245 Critical and near-critical slopes have been the topic of numerous studies as they are conducive to enhanced 

246 mixing; upon reflection all wave rays are aligned alongslope. This high density of wave rays leads to a high 

247 energy density, and thus the potential for instability, wave breaking, and subsequent mixing (Ivey and Nokes, 

248 1989). It is thus possible that such a canyon could lead to enhanced levels of mixing. 

249 The second class of V-shaped canyon constructed is a flat bottom canyon. In this case, the topography does 

250 not slope smoothly between the sea floor and continental shelf, as was the case for the near-critical slope 

251 canyon, but instead steps up at the V-boundary via a vertical wall. A schematic of this canyon can be found 

252 in figure 6b. The motivation behind the design of the canyon is that it possesses the potential to act as a 

253 wave trap for sufficiently large ζ (Maas et al., 1997). Note that both types of canyons have the same profile 

254 when viewed from the sea surface (i.e. in the x-y plane), but vary in their sidewall steepness (angle α) only. 

255 Throughout the suite of experiments, ζ is varied identically for both classes of canyons. Throughout both 

256 classes of canyons, the canyon length, L, is held constant while the canyon mouth is altered to modulate 

257 ζ. Additionally, both classes of canyons have a maximum topographic height, H, that is only one-half of 

258 the total domain. Thus, we have established two differing values of α through the construction of these two 

259 types of V-shaped canyons, as well as a sweep of ζ, which is systematically varied for both cases. 

260 While the two classes of canyons are differentiated by their value of α, α for the near-critical slope canyons 

261 has some ζ-dependence. That is, based on the construction of the topography, 

tan αt 
tan α = (24) 

cos ζ 

262 such that for small values of ζ, the slope of the sidewalls is approximately the thalweg slope (i.e. tan α ≈ 

263 tan αt). As ζ increases, the sidewall slope increases to be larger than the thalweg slope. In the limit of 

264 ζ → 90◦, the sidewall slope approaches vertical. There is thus a non-negligable ζ-dependence for the near-

265 critical slope canyon sidewall steepness. This implies that the sidewall steepness for the near-critical slope 

266 canyons is near-critical to supercritical. It is thus preferable, and the approach of this paper, to differentiate 
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267 canyons classes through their thalweg angle of inclination, αt, which is held fixed for each canyon class. 

268 To summarize, we have two classes of V-shaped canyons, that are distinguished only by their sidewall 

269 steepness, α. The first class of canyons has a thalweg steepness that is near-critical and so, by construction, 

270 near-critical to supercritical sidewalls. The second class of canyons has vertical walls, which are thus very 

271 supercritical. The second parameter of interest is the canyon aspect ratio, ζ, which is varied systematically 

272 for both canyons. We modulate ζ by adjusting the canyon width only. Both canyons have a fixed height, H, 

273 of 100 meters and a fixed length, L, of 744 meters. See figure 6 for the geometry of the two canyon classes. 

274 In figure 6, isobaths, or lines of constant depth, are overlaid on the sidewalls to make clear that the canyons 

275 vary in α. Parameters of interest, both topographic and those for the wave and ambient fluid, are listed in 

276 table 1, as well as their corresponding values for the submarine canyons considered in this part of the study. 

277 While these canyons follow idealized V-shape profiles with two different classes of sidewall steepnesses, their 

278 general profile is rooted in reality. In a statistical analysis of the occurrence of submarine canyons, Harris and 

279 Whiteway (2011) separated global submarine canyons into differing classes based on canyon geometry. They 

280 find that canyons surrounding New Zealand and Western North America have very small mean thalweg slopes 

281 (3.8 and 4.3 degrees, respectively) and lie on active margins, which leads to steep sidewalls. These observed 

282 canyons are very similar to our flat bottom canyon class. They also find canyons, such as surrounding India 

283 and Australia that have larger thalweg slopes (ranging from 1.1 to 20.9 degrees and 0.8 to 23.7 degrees, 

284 respectively) which can be near-critical for certain wave frequencies. They also observe these canyons to be 

285 on passive margins, which is indicative of more gradual sidewall slopes, akin to our near-critical slope canyon 

286 class. Thus, while certain simplifications have been used in the development of our topography, both classes 

287 of canyons are similar to submarine canyons observed and there is the potential to apply the lessons learned 

288 in this idealized framework to real continental slope canyons. We will return to this in Part 2 of this study 

289 (Nazarian and Legg, 2017b). 

290 Now that we have defined our canyon classes, we present a schematic of internal wave reflection in flat 

291 bottom and near-critical slope canyons, similar to that presented for the cases of a vertical wall, subcritical 

292 slope and supercritical slope, in figures 7 and 8, respectively. Additionally, in figure 9, we present all of the 

293 calculations that can be conducted using the ray tracing algorithm, outlined in section 3, for the case of a 

294 near critical slope canyon of moderate width. 

295 5. Results 

296 We now use the ray tracing algorithm to probe the parameter dependence of internal wave-driven instability 

297 in continental slope canyons. We start by considering the case of the flat bottom canyon and present 

298 individual ray trajectories and vertically-integrated relative increase in ray density for three different canyon 
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299 aspect ratios in figure 10. We do not consider increases to the vertical wavenumber here, as the vertical 

wavenumber does not change upon reflection off vertical walls (see section 2). Figure 10 illustrates a ζ300 -

301 dependence on the pattern of vertically-integrated increase in ray density. 

302 For a relatively wide canyon, figure 10a-i illustrates that rays only reflect, at most, one time within the 

303 canyon region (some rays propagate over the canyon undisturbed). Additionally, all of these rays are then 

304 reflected out of the canyon. From geometric optics, we know that this is true for all flat bottom canyons with 

305 ζ < 30◦ . While the rays, and their associated energy, are able to exit the canyon without being trapped, 

306 the canyon does act to focus them toward the center, as seen in the relative ray density plot in figure 10a-ii. 

307 Since the vertical wavenumber cannot increase upon reflection, ray focusing is the only potential mechanism 

308 by which wave instability can be achieved in this framework. 

309 In figure 10b, we consider a canyon of moderate width (i.e. ζ = 48.3◦). Note that subsequent ray reflections 

310 inside the canyon are now possible. Again, from geometric optics, we know that at ζ = 45◦ the second reflec-

311 tion must be further into the canyon. This is in contrast to the outward reflection of rays that characterizes 

312 the wide canyon in figure 10a. The magnitude of relative ray density per grid box is slightly enhanced in 

313 this regime, compared to the first regime and the pattern of increased ray density is more evenly distributed 

314 throughout the canyon region, leading to a higher concentration of ray energy. Additionally, note that this 

315 setup leads to wings of increased ray density extending outside the canyon region, a result of ray scattering 

316 and focusing. This can be an additional source for instability extending away from the topography, as the 

317 ray density can also be elevated, and thus lead to mixing, on the shelf. 

318 Figure 10c illustrates the case of a narrow flat bottom canyon. For this instance, it is possible for rays entering 

319 the canyon region to have multiple reflections and remain trapped in the canyon, leading to high ray/energy 

320 density as in canyons of more moderate width (i.e. figure 10b). Yet, the ray tracing output illustrates 

321 that very few rays are able to enter the canyon region due to the decreasing mouth width corresponding to 

322 increasing ζ. This is potentially a mitigating factor in how much energy can be concentrated in flat bottom 

323 canyons for large values of ζ. 

324 Despite having a different thalweg slope, αt, we find that the near-critical slope canyon case behaves similarly 

325 to the case of the flat bottom canyon. The main distinction between the near-critical slope canyon and flat 

326 bottom canyon is that the sidewalls are not vertical in the case of the near-critical slope canyon, which allows 

327 a change/redistribution of wavenumber upon reflection, as outlined in section 2. The main implication of this 

328 physics is that, for relatively wide canyons experiencing, at most, one reflection (ζ < 30◦), the rays are still 

329 scattered out of the canyon upon reflection, but onto the shelf. This is in contrast to the flat bottom canyon 

330 case, in which rays are scattered back out towards the abyss (see figure 10a). An example of a relatively low 

331 ζ case of the near-critical slope canyon is illustrated in figures 11a and 12a. 
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332 We next consider the case of a slightly narrower canyon, again with ζ = 48.3◦ in figures 11b and 12b. 

333 For the case of the near-critical slope canyon, the transition point for outward scattering and secondary 

334 reflections no longer occurs at ζ = 30◦ due to the non-vertical sidewalls. Instead, the transition point is 

335 shifted towards higher ζ. This is a direct implication of the dispersion relation and the redistribution of 

336 wavenumber components upon reflection off the topography. At this higher transition point, all rays are 

337 scattered further into the canyon. This threshold is derived from equations (8). Specifically, rays begin to be 

338 reflected into the canyon at the transition of kR = 0, and thus the quadratic equation with variable kR/kI 

339 simplifies to 

2 mR tan2(ζ) + tan2(φI + ζ) − 2 tan(φI + ζ) tan(ζ) − ( ) sec2(φI + ζ) = 0 (25) 2 mI 

340 We know that for the initial reflection, φI can either be ±ζ based on which side of the canyon the ray reflects 

341 off. Both positive and negative values of φI yield the same solution so, for ease, we use φI = −ζ which 

342 renders (25) 

tan2(ζ) = ( 
mR 

)2 (26) 
mI 

343 where the ratio of the vertical numbers is given in (7). This yields a transitional ζ of 45.3◦ , which is 

344 confirmed by the ray tracing algorithm. While the point of transition is shifted, the same underlying physics 

345 is present: rays are now reflected back into the canyon region where they can further reflect and scatter. 

346 As the number of reflections increases, so too does the likelihood of increasing vertical wavenumber and, 

347 potentially, breaking. There also continue to be wings of enhanced ray density extending from the canyon 

348 region, another result of the canyon ray scattering. Additionally, the increase in vertical wave number, 

349 another precursor for potential instability, is more pronounced and encompasses a larger spatial area, for 

350 this higher ζ canyon (see figure 12b). 

351 For large values of ζ, figures 11c and 12c suggest that narrow near-critical slope canyons show a significantly 

352 smaller region of wave focusing and increased vertical wavenumber than narrow flat bottom canyons and 

353 thus, potentially less mixing. This is due to the fact that the ray density in the near-critical slope canyons 

354 decreases much faster as a function of ζ than that of the flat bottom canyon, which can be seen in a 

355 comparison of figures 10 and 11. Although the ray density decreases rapidly and the envelope of increased 

356 vertical wavenumber has shrunk, the magnitude of the increase in vertical wavenumber increases to a greater 

357 extent compared to near-critical slope canyons of moderate ζ, thus potentially mitigating some of the effects 

358 of decreased wave focusing. These three near-critical slope canyon cases are summarized in figures 11 and 

359 12 in a similar fashion to figure 10. 

360 So far we have only used the ray tracing to consider variations in two topographic parameters: the canyon 
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361 aspect ratio (i.e. ζ) and the thawleg slope (i.e. αt). Given the relative speed of the ray tracing algorithm 

362 versus a fully-nonlinear numerical model, we can also use the ray tracing algorithm to probe the sensitivity 

363 of our results to the topographic quantities that we have hitherto held constant: canyon height, H, and 

364 canyon length, L. To complete this test, we conduct the ray tracing for the case of the flat bottom canyon 

365 with ζ = 73.3◦, as the ray tracing algorithm suggests this is where ray density for flat bottom canyons is 

366 at a maximum and we are interested in how changes to these parameters can make the canyon more or less 

367 effective at leading to wave instability. We only consider the flat bottom canyon here, as changing the height 

368 of the near-critical slope canyon implies an increase in the canyon length, and we want to separate the height 

369 and length dependence. 

370 First, we investigate the implication of increasing the canyon height, the results of which are shown in figure 

371 13. As the canyon height increases from the default value of 100 meters (13a) to the full depth of the domain, 

372 200 meters (i.e. from sea floor to sea surface, 13c), the vertically-integrated ray density increases. Thus, 

373 taller canyons are more efficient at focusing and, potentially, trapping internal wave energy. Given that 

374 the only mechanism for instability in the flat bottom canyon is increased ray density, we would expect this 

375 increase in canyon height to lead to an increased potential for instability. Qualitatively, figure 13 suggests 

376 that the ray density within the canyon and outside the canyon mouth, and therefore the instability within 

377 the canyon and outside the canyon mouth, increases linearly with increasing canyon height. An appropriate 

378 scaling for the height-dependence of the instability and potential for energy loss in canyons may thus be 

379 estimated as H/D where H is the height of the canyon and D is the full domain depth. In the case of 

380 figure 13c, this ratio is equal to unity. Perhaps intuitive, this scaling is important when transferring this 

381 understanding to fully-nonlinear GCMs where canyon height is one of the important differentiating factors 

382 between canyons. Also note that this scaling is valid for canyons with critical and supercritical side slopes, 

383 but not for subcritical side slopes which lead to forward wave scattering and propagation onto the shelf. 

384 We similarly test the sensitivity of wave focusing in canyons to the length of the topography. We again 

385 consider the case of the ζ = 73.5◦ flat bottom canyon and now consider the Froude number as it provides 

386 more intuition when considering slices in the x-z plane than does the ray density at each depth. The Froude 

387 number from the default (i.e. H = 100 m) ray tracing calculation is shown in figure 14a. The default 

388 length of the canyon for all simulations was 744 meters (see table 1). We elongate the canyon to a length of 

389 1046.2 meters (roughly 1.4 times longer than the default canyon), as well as increase the canyon width, so 

390 that ζ remains fixed at 73.5◦ . The result is shown in figure 14b. There is a marked increase in the spatial 

391 extent of Fr > 1 for the longer canyon. In the default case, the horizontal extent of the region of potential 

392 instability was approximately 400 meters, while for the elongated canyon the region of potential instability 

393 is approximately 600 meters (this approximation of a 50 percent increase in the extent of instability is in 

394 approximate agreement with the factor of 40 percent increase in the canyon length). The vertical extent of 

395 instability remains relatively constant. There is also an increase in the magnitude of the Froude number in 

15 



396 the potentially unstable regions. Thus, this sensitivity test suggests that the potential energy lost from the 

397 internal wave due to the canyon may scale like parameter L, the length of the canyon. 

398 Note, however, that it is not the absolute length of the canyon that is important, but the canyon length 

399 relative to the wavelength of the internal tide. Between figure 14a and figure 14b, the wavelength is fixed 

400 for the gravest baroclinic internal tide, but if the wave were of a different frequency, and thus a different 

401 wavelength, we may expect more or less of the wave to interact with and reflect off the canyon topography. 

402 This hypothesis is tested in figure 14c. As the wavelength is doubled, the spatial extent of the potential 

403 instability decreases by approximately a factor of one half. The magnitude of the Froude number in the 

404 regions of potential instability is also reduced. This suggests that the energy loss in the canyon region may 

405 thus scale like L/λx where λx is the horizontal component of the wavelength aligned with the canyon axis. 

406 We hypothesize that this scaling is likewise appropriate for the near-critical slope canyon but we do not test 

407 that here, as we can only differentiate the effects of changing canyon height and length by considering the 

408 case of vertical sidewalls. 

409 6. Discussion and Conclusion 

410 There have been extensive numerical modeling studies regarding internal tide energy loss at a variety of 

411 topographic features, yet submarine canyons, specifically canyons on the continental slope, have not received 

412 sufficient attention. As a first attempt to study the underlying physical processes and understand the 

413 topographic parameters that govern the strength of canyon-induced mixing, we have developed a ray tracing 

414 algorithm from the linear theory to be used on two classes of idealized continental slope canyons. This ray 

415 tracing algorithm tracks quantities such as ray density and wave number. From these quantities, we have 

416 developed an estimate of the Froude number, which is a measure of the likelihood of instability and mixing. 

417 This is the first time that a ray tracing algorithm has been used to estimate the Froude number and the 

418 likelihood of instability resulting from internal wave reflection off topography. 

419 In the construction of this ray tracing algorithm from the linear theory, we have not made any assumptions 

420 that are canyon specific; we have simply extended the internal wave reflection theory to some 3D rotated, 

421 inclined plane (with parameters α and ζ). This algorithm could therefore be applied to wave reflection off 

422 any arbitrary topography, since the patch of topography that a ray reflects off can, on some infinitesimal 

423 level, be considered a 3D rotated, inclined plane. The ray tracing may, in the future, be used as a precursor 

424 to a GCM or observational campaign, to identify whether instabilities occur for given topography and where 

425 those instabilities occur. The ray tracing algorithm does not require significant computational power or time 

426 and may thus be a powerful tool in considering whether GCM-scale simulations or field programs should be 

427 conducted, as well as the scope of such simulations or observations. 
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428 Here we have provided numerous examples of the utility of the ray tracing algorithm for continental slope 

429 canyons, in addition to showing its generalizability for other topographies. Perhaps contrary to intuition, 

430 we have observed that canyons of intermediate aspect ratio are most efficient at increasing ray, and thus 

431 energy, density, which can thereby lead to mixing. Although the threshold for subsequent reflections in the 

432 canyon is different between the flat bottom (ζ = 30◦) and the near-critical slope canyons (ζ = 45.3◦), both 

433 canyon classes exhibit an increase in ray density for moderate width canyons (i.e. for canyons with L ∝ W , 

434 where W is the canyon width). Additionally, for the case of near-critical slope canyons, certain values of ζ 

435 can lead to a 15% or larger increase in vertical wavenumber, and thus a decrease in the vertical length scale, 

436 functioning as another potential catalyst for instability. We have also tested the sensitivity of our results 

437 based on the default values of canyon height and length. Informed by the ray tracing algorithm for the 

438 case of a flat bottom canyon with some existing instability present in the default case, we conducted further 

439 experiments with slightly modified values of H, L, and λx. Based on the changes to the spatial scales of 

440 potential instability, we proposed that canyon instability and energy loss can be scaled by H/D, where D is 

441 the domain depth, and L/λx. This is one direct way that the ray tracing can inform parameterizations for 

442 tidally-driven mixing in continental slope canyons in GCMs. 

443 So far, we have not offered any test of robustness that the ray tracing algorithm correctly predicts regions 

444 of instability in continental slope canyons. Our goal in this paper is to document the formation of a ray 

445 tracing approach and employ it to obtain a first-order understanding of internal wave scattering dynamics in 

446 continental slope canyons. In Part 2 of this paper (Nazarian and Legg, 2017b), we compare our ray tracing 

447 results with calculations of instability diagnosed from a fully-nonlinear GCM as a means of testing the ray 

448 tracing’s robustness. Additionally, we combine the utility of the ray tracing algorithm and the utility of a 

449 GCM to further explore the idealized parameter space that we have developed here. Used in tandem, these 

450 two approaches allow us to gain a deeper understanding of the effects of canyon sidewall slope and canyon 

451 aspect ratio in regulating internal wave-driven mixing within and around canyons. 
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Table 1: Summary of Parameters of Interest 

α ζ (◦) H (m) L (m) −2) ω2 (10−8 s −2) N 2 (10−6 s
αnear−critical 22.8 100 744 1.99 1.00 

48.3 100 744 1.99 1.00 
52.3 100 744 1.99 1.00 
64.4 100 744 1.99 1.00 
83.2 100 744 1.99 1.00 

90◦ 22.8 100 744 1.99 1.00 
48.3 100 744 1.99 1.00 
64.4 100 744 1.99 1.00 
73.5 100 744 1.99 1.00 
73.5 150 744 1.99 1.00 
73.5 200 744 1.99 1.00 
73.5 100 1046.2 1.99 1.00 
73.5 100 1046.2 0.995 1.00 
83.2 100 744 1.99 1.00 
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Figure 1: Schematic of the wave reflection from sloping topography at an angle α to the horizontal, and rotated at an angle 
ζ from the y-axis. Bold arrows indicate the wave group velocity vectors. (k, l, m) are the wave vector components, and I 
subscripts denote the incident wave while R subscripts denote the reflected wave. The incident wave group velocity vector is 
at an angle θg to the horizontal, and an angle φI to the normal of the topographic plane. Based on the theory and schematic 
set forth in E82. 
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Figure 2: Ray tracing algorithm application for a single rave propagating into the domain from the Western boundary, normal 
to topography, and reflecting off a vertical wall (i.e. α = 90◦). (a) 3-dimensional view of the ray propagation and reflection. 
(b) 2-dimensional view of the ray propagation and reflection in the x-z plane. 
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Figure 3: Ray tracing algorithm application for a single rave propagating into the domain from the Western boundary, oblique 
to topography, and reflecting off a vertical wall (i.e. α = 90◦). (a) 3-dimensional view of the ray propagation and reflection. 
(b) 2-dimensional view of the ray propagation and reflection in the x-z plane. (c) 2-dimensional view of the ray propagation 
and reflection in the x-y plane. 
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Figure 4: Ray tracing algorithm application for a single rave propagating into the domain from the Western boundary, normal to 
topography, and reflecting off a subcritical slope. (a) 3-dimensional view of the ray propagation and reflection. (b) 2-dimensional 
view of the ray propagation and reflection in the x-z plane. 
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Figure 5: Ray tracing algorithm application for a single rave propagating into the domain from the Western boundary, normal 
to topography, and reflecting off a supercritical slope. (a) 3-dimensional view of the ray propagation and reflection. (b) 
2-dimensional view of the ray propagation and reflection in the x-z plane. 
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Figure 6: Two classes of V-shaped canyons analyzed in this study. (a): near-critical slope canyon, (b): flat bottom canyon. 
Note that throughout our suite of experiments, angle ζ is varied identically for both class of canyons. Thus, the two different 
classes of V-shaped canyons are different in angle α only. The sidewalls of each canyon have isobaths, or lines of constant depth, 
drawn for clarity. 
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Figure 7: An example of the ray tracing algorithm for a flat bottom canyon with ζ = 64.4◦ . (a): 3-dimensional perspective , 
(b): 2-dimensional perspective in the x-y plane (i.e. downward looking). A large number of rays are initiated at the Western 
boundary, spanning the x-z plane, with both upward and downward going components (only one ray is shown here for clarity). 
Rays then propagate Eastward according to the dispersion relation and can scatter off topography. Here the ray reflects off the 
canyon sidewall and enters onto the continental slope obliquely. As before, x is aligned with longitude (West to East) and y is 
aligned with latitude (South to North). 
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Figure 8: As in figure 7, but now for the case of a near-critical slope canyon. 
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Figure 9: Various diagnostics produced by the ray tracing algorithm for the case of a near-critical slope canyon with ζ = 52.3◦ . 
Six hundred individual rays are used here for illustration, and thus individual rays are not distinguishable. (a) Ray tracing 
with 600 individual rays. (b-i) Relative increase in ray density, integrated in the vertical, and (b-ii) ray density in the xz-plane 
along the canyon center. (c-i and d-i) Relative increase in vertical wavenumber and maximum Froude number in the xy-plane 
at mid-depth, and (c-ii and d-ii) in the xz-plane along the canyon center, respectively. Notice here that Fr > 1 at various 
locations in the canyon, indicating potential regions of instability. Increased Froude number is also present for a given depth, 
indicating that instability can also occur on the shelf as a result of canyon processes. Given that the incoming wave has Fr < 1, 
this increase in Fr can be attributed to canyon effects. 
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Figure 10: Ray tracing (i) and ray density (ii) conducted for the case of the flat bottom canyon. The panels, from top to 
bottom, represent the cases of relatively large (a), moderate (b) and small (c) canyon width, respectively. The ray tracing plots 
only show a limited number of rays to illustrate the reflection patterns, while the ray density plots are the result of a large 
number of both upward- and downward-going rays spanning all of y and z, initiated at the Western boundary. Note that panel 
(c) is zoomed in due to the canyon being very narrow. 
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Figure 11: Ray tracing (i) and ray density (ii) conducted for the case of the near-critical slope canyon. The panels, from top 
to bottom, represent the cases of relatively large (a), moderate (b) and small (c) canyon width, respectively. The ray tracing 
plots only show a limited number of rays to illustrate the reflection patterns, while the ray density plots are the result of a large 
number of both upward- and downward-going rays spanning all of y and z, initiated at the Western boundary. Note that panel 
(c) is zoomed in due to the canyon being very narrow. 

33 



Figure 12: As in figure 11, except now the maximum ratio of reflected vertical wave number to incident vertical wave number 
is plotted along the canyon center, as the vertical wave number can change within a near-critical slope canyon. 
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Figure 13: Vertically-integrated relative increase in ray density for a flat bottom canyon with height 100 meters (a), 150 meters 
(b) and 200 meters (c). As the canyon height increases, canyons become more efficient at focusing and, potentially, trapping 
internal wave energy. 
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Figure 14: Maximum Froude number from the ray tracing algorithm, taken along the center of a flat bottom canyon in the 
second regime. (a) Flat bottom canyon of the default length of 744 meters and (b) flat bottom canyon of the new length of 
1046.2 meters and (c) flat bottom canyon of the new length of 1046.2 meters with double the frequency of that in (a) and (b). 
For all canyons, ζ remains constant at 73.5◦ . Note the variation in the colorbar now for Fr > 1. 
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